NASA TECHNICAL NOTE NASA L D-4402
a, /

= m
= =i
-t — -
< o= o
S LESE
= r=2x
= pE2
< =3
ot =z
=

LOAN COPY: RETURN TO
AFWL (WLIL-2)
KIRTLAND AFB, N MEX

PERFORMANCE OF SEVERAL
CONVOLUTIONAL AND BLOCK CODES
WITH THRESHOLD DECODING

by Frank Neuman and Dale R. Lumb

Ames Research Center

Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <« WASHINGTON, D. (. MARCH 1968

TECH LIBRARY KAFB, NM

A

01L3Luca8

PERFORMANCE OF SEVERAIL CONVOLUTIONAL AND BLOCK CODES

WITH THRESHOLD DECODING
By Frank Neuman and Dale R. Lumb

Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — CFST! price $3.00

TABLE OF CONTENTS

SUMMARY .
INTRODUCTION

CODES AND DECODING TECHNIQUES INVESTIGATED
Majority Decoding of a Convolutional Code
APP Decoding of a Convolutional Code for the Gau551an Channel
Majority Decoding of a Cyclic Block Code .
APP Decoding of Cyclic Block Codes for the Gauss1an Channel

MEASURES OF PERFORMANCE
DESCRIPTION OF DECODING SIMULATIONS .
TEST RESULTS FROM HARDWARE ENCODING/DECODING SYSTEMS

TEST RESULTS FROM THE COMPUTER EXPERIMENT .
Performance of the (15,7) Block Code
Performance of the (73,45) Block Code .
Performance of the (24,12) Convolutional Code
Performance of the (44,22) Convolutional Code
Summary of Test Results

ERROR DETECTION FOR BLOCK AND CONVOLUTIONAL CODES
Suggestions for Further Error Detection for Block Codes
An Error Detection/Deletion Strategy for Convolutional Codes

CONCLUDING REMARKS

APPENDIX A - MAJORITY DECODING AND APP DECODING OF A (24,12) THREE

ERROR CORRECTING CONVOLUTIONAL CODE

APPENDIX B - MAJORITY DECODING AND APP THRESHOLD DECODING OF THE
(15,7) BOSE-CHAUDHURI CODE .
APPENDIX C - DERIVATION OF THE APP DECODING ALGORITHM .

APPENDIX D - CALCULATION OF PERFORMANCE MEASURES FROM AN ENERGY
EFFICIENCY STANDPOINT

APPENDIX E - BIT ERROR CALCULATIONS FROM ERROR PACKET SIMULATIONS

REFERENCES

FIGURES

Page

U WNN

(o)}

11
12
12
13
13
14
14
15
15
16

18

19

23

26

29

32

35

37

PERFORMANCE OF SEVERAL CONVOLUTIONAL AND BLOCK CODES
WITH THRESHOLD DECODING
By Frank Neuman and Dale R. Lumb

Ames Research Center

SUMMARY

The performance of several codes applicable to space communications telem-
etry links was evaluated. The study was limited to high rate and relatively
short constraint length codes. Explicitly, the (15,7) and (73,45) block codes
and the (24,12) and (44,22) convolutional codes were investigated. Two types
of threshold decoding schemes, derived by Massey, were applied, namely, major-
ity decoding and the more powerful but complex a posteriori probability (APP)
decoding.

The gaussian data channel and the decoders were simulated on a general
purpose computer. The results show that, for the codes considered, APP decod-
ing has approximately a 1.5 dB advantage over majority decoding. The most
powerful code studied, (73,45) with APP decoding, gives a 2.1 dB improvement
over a seventh bit parity check code. Also, new error deletion schemes were
designed and tested for the codes studied. Because of their constant computa-
tion rate, these codes are candidates for high data rate channels. For the
low data rates required for deep space missions such as Pioneer, however, the
code performances reported here form a basis of comparison with the more
powerful sequential decoding of convolutional codes, a variable computation
rate decoding technique.

INTRODUCTION

The purpose of this investigation was to evaluate the performance of
several cyclic block and convolutional codes with different decoding tech-
niques introduced by Massey in 1963 (ref. 1). These techniques are called
majority threshold decoding and a posteriori probability (APP) threshold
decoding.

Although for the gaussian channel an improvement in performance was
expected for APP decoding over majority decoding, no data were available on
the amount of improvement possible with this more complex decoding scheme.
Before this investigation, only the gross behavior of the codes was known for
threshold decoding. The detail was insufficient to allow a deep space commu-
nication link designer to decide on the application of these codes. For this
application of coding, it was found that the measures of performance given in
the literature, namely, block and bit error probability estimates (for block
codes) and probability to first error (for convolutional codes), were insuf-
ficient for comparing codes. A unifying measure is proposed in the section on
measures of performance and has been applied in this report.

The codes were studied in somewhat greater detail than is required to
calculate performance figures for several reasons: first, to present suffi-
ciently detailed information to the spacecraft communication designer to allow
him to choose a code suitable for his particular needs, or even to reject
these coding schemes; second, to permit the study of additional processing
steps that might improve the performance of the individual codes beyond that
of the decoding procedures. Some improvements are indicated in this report,
along with the results of trial experiments.

CODES AND DECODING TECHNIQUES INVESTIGATED

The codes investigated were from the class of block and convolutional
codes which can be decoded by threshold decoding. 1In threshold decoding, the
value of each bit is decided by comparison with a predetermined probability
threshold. This type of decoding is relatively simple to implement compared to
more optimal strategies. The convolutional codes that are threshold decodable
have been constructed essentially through trial and error techniques, hence
the name ''trial and error codes'" (ref. 1). The convolutional encoder is
a binary shift register of length equal to the constraint length of the code.
The shift register is tapped to calculate m-1 parity bits per information bit
for a rate 1/m code.

A number of cyclic block codes have been found to be threshold decodable.
The encoder, in this case, is a tapped cyclic shift register of length equal to
the number of information bits in a block.

Of the codes that are threshold decodable, only relatively high rate codes
were considered in this study. Compared to high rate codes, low rate codes
have a lower signal-to-noise-power ratio per bit for the same information rate.
This is not consistent with the requirement of maintaining coherent detection
with state-of-the-art demodulation equipment. Also, the codes considered were
of relatively short constraint length, since it is desirable for encoders for
spacecraft application to be relatively simple.

Threshold decoding was introduced in 1963 by Massey (ref. 1), who
invented two types of threshold decoding: majority decoding and a posteriori
probability (APP) decoding of a set of orthogonal parity check equations. In
the following section the procedure will be described briefly in terms of the
algebraic manipulations required for the decoding process. The details of
threshold decoding are shown by means of examples for the (24,12) convolu-
tional code, and for the (15,7) block code in appendixes A and B.

Majority Decoding of a Convolutional Code

Majority decoding derives its name from the fact that a decision about
whether to correct a received bit is based on the majority of a set of parity
check equations. A functional block diagram is shown in figure 1. A part of
the decoder duplicates the encoder which uses as input the received informa-
tion bit sequence to calculate parity check bits. These are summed Mod 2 with

2

e e sz

A i

the received parity bits. The resulting equation, called an S equation, is

a function of error terms only. An S equation will be 0 when it contains

an even number and 1 if it contains an odd number of error terms. There are
as many S equations as the constraint length of the code. If one assumes

that decoding will correct all errors, the error terms in the S equation,
which were due to the received bit before decoding, are removed by complementing
the S registers. With this assumption, the S equations are combined into a
smaller set of orthogonal A equations, each of which consists of the error
term for the bit to be decoded next, as well as other error terms; but none of
the other error terms occur more than once in the set of A equations. For
majority decision decoding, when the majority of A equations indicates an odd
number of errors, the decision is made to correct the bit that is being decoded.
In equation form, the rule is expressed as

e% =1
if J
L Ay > J/2 (1)
i=1
where e% is the error term of the decoded bit. The decoder incorporates an
alarm circuit (not shown) which resets the S register when the decoder has

attempted too many corrections in a given interval. The intention is to reduce
propagation of errors after the decoder has made an initial error.

APP Decoding of a Convolutional Code for the Gaussian Channel

Majority decoding, in general, is not optimum. The equations for the
various Ay carry different weights of evidence that there may be an error in

i}, the bit being decoded. On the average, when A = 1, the more terms the

equation has, the smaller is the probability that the error is in ii, that is,

e] = 1. Therefore, optimum threshold decoding will be considered here for the
case in which the received bits do not all have the same error probability, but
the individual probabilities are known at the receiver. An example of such a
channel 1s one employing coherent matched filter detection of a binary signal-
ing alphabet. The matched filter output is a gaussian distributed noise volt-
age added to the binary signal. The receiver then uses the polarity of the
received voltage V to assign to the received bit the more probable value of
the binary number transmitted. In addition, the amplitude of the received
voltage can be used to compute the probability that this assignment was

wrong.

It is shown by Massey and is also proved in appendix C that for the time-
varying channel, the following decoding theorem holds:

Choose e] =1

if J
) w.A. > T (2)

Otherwise, choose e] =0

where w; are weights and T is the threshold. Equation (2) is of the same
form as the majority decoding theorem, where T = J/2 and w; = 1 for all i.
For APP decoding, the threshold and the weights are calculated for each bit
separately from the individual bit error probabilities in the following manner:
Define a new set of equations that corresponds to the A; 1in equations (2) and

(Al6)

n
C; =) ¢ (3)
where B denotes either an information bit i or a parity bit p, j indi-
cates the jth information or parity bit, depending on the superscript, and
the summation sign denotes ordinary addition. Note that the terms correspond-

ing to el are missing from the new set of equations. The ¢y are calculated
from the %it error probabilities in the following manner:

3 - ot i - ()]

and the weights are defined from the Ci as

=
"

2 loge{coth[(l/Z)Ci]} (5)

=
i

2 loge{coth[(1/2)cy]} (6)

Co = —log[? - 2Pr<e%=l>] (7)

Then the threshold is calculated for each particular bit as

where

J
T=(1/2)] w (8)
1=0

Figures 2(a) to 2(c) are intended to clarify the above functional relationships.
Figure 2(a) shows how, with increased energy level of the received signal plus

noise, the individual bit error probability, Pr(e?=l), decreases. It decreases

faster for lower average bit error probability. However, c; increases with
decreasing level of the received bit (see fig. 2(b)). Consequently, the sum
(1/2) ©c; 1is large if many bits have below average levels. Figure 2(c) shows
that a large (1/2)% c; results in a low weight, a result that agrees with
intuition. The above generalization is illustrated by an example given in
appendix A.

Majority Decoding of a Cyclic Block Code

The decoding process for majority decoding of a cyclic block code is very
similar to that for the convolutional code. However, the A equations are
generated differently. After each decoded bit in a block, the indices of the
error terms are advanced by one (modulo the block length) to obtain the A
equations for the next bit to be decoded. The circulation of the indices in
the decoder is the circulation or feedback of the bits in a shift register.
The majority decoding theorem is identical to that for the convolutional code:

Choose e% =1

. J
if } oA > 3/2 (9)

Otherwise, choose i
e1=0
In the decoding shift register the decoded bits can be fed back in one of
two ways, either as they are received or after correction.
APP Decoding of Cyclic Block Codes for the Gaussian Channel

The APP decoding theorem for the cyclic block code is identical to that
for the convolutional code, namely,

Choose e% =1

. J

if
.Z woA > T (10)
1=1

Otherwise, choose e% =0

where the terms have the same meaning as before.

Compared with the binary feedback, the feedback of the c? in the analog

shift register is more involved. Here three types of feedback were explored.

(1) Soft feedback. The original c? computed from the received bits are

circulated in the register. This assumes that the error probability of the
corresponding bit in the binary shift register has not changed. (This would
have been a reasonable feedback connection if it had been used with the dotted
feedback connection (Fig. 32 of appendix B) for the binary shift register.
However, soft feedback was explored in conjunction with the corrected binary
feedback, since this technique had been proposed in reference 1.)

(2) Hard decision feedback. After a bit is decoded its error probability

is assumed to be zero, which means that the corresponding c? is zero. This

N

causes a computing difficulty toward the end of each decoded block where the ;
weights approach infinity. This difficulty was overcome by the rule of assign-

ing to the decoded c? a number corresponding to a low error probability.

(3) Full APP feedback. The name implies that after each bit is decoded,

the bit error probability after decoding is fed back as its corresponding c?.

If one assumes bit for bit independence, the c? can be calculated as follows:
Let

J
x=) wA, -T=-log[p/(1 - p)] (11)

where p 1is the bit error probability after decoding

e™ =p/(1 - p) (12)

c? = ~log(l - 2p) = -log[(1 - e)/ (1 + e™)]

However, it should be noted that bit error probability after decoding each bit

depends strongly on the bit error probability of many other bits and therefore

the independence between bit error probabilities under which the coding theorem
has been developed does not strictly hold. Nevertheless, this decoding method

will be shown to perform somewhat better than the two others described

previously.
MEASURES OF PERFORMANCE

In order to compare the effectiveness of different coding schemes, meaning-
ful measures of performance must be found. The normalizing assumptions as well
as the calculation of the performance measures and curves are shown in appen-
dix D. Here the shortcomings and advantages of the various performance mea-
sures will be discussed, and the justification for the ones chosen will be
given. One measure is the output bit error probability for a given signal
energy per bit per noise spectral density, Ey/N,. This measure accounts for
the rate loss of codes with various ratios of information to parity bits. How-
ever, it does not account for the fact that various coding schemes will yield
different output error streams with different statistical properties, the rela-
tive desirability of which will vary according to the processing strategy of
the decoded data that follows.

Scientific data from space probes are generally not sent in units of bits
but words (groups of bits). For comparison of different coding schemes, word
error probability will therefore be chosen. Some information about the perfor-
mance of certain block codes has been published in terms of woxrd error proba-
bility, with a word length equal to the block length of the code, but only
because the bit error probability could not readily be calculated. The mea-
sure based on block length does not permit direct comparison of codes of

various block lengths. For convolutional codes with threshold decoding usually
the probability to the first error pj(e) has been computed. This measure is
not satisfactory for the comparison between different kinds of codes. When the
coding and decoding are completely simulated, one can choose any word length,
The word length chosen for this study is six information bits, since this
length has been used in the past on scientific deep space probes, such as
Pioneer VI and VII. For both probes the simplest error detection codes are
used, that is, one parity check bit is added to each six-bit data word. 1In
such a code, words known to contain errors are deleted. For a space-to-ground
telemetry channel, scientific data resulting from measurement of physical quan-
tities are transmitted at specified intervals. As long as the word deletion
rate is small (in the order of a few percent), the random deletions may have
little more effect on the usefulness of the data than a coding rate loss. If
one concedes this, the coding gain for the seven-bit parity check code is shown
in figure 3. The coding gain is greater than 2.5 dB over a surprisingly large
range of signal-to-noise ratios. One must keep in mind, however, that the
deleted words in error occur at random. Random deletion of words may have a
much more serious effect than the dB rate loss equation (10 log;p(l-deletion
rate)) would suggest, since for many experiments, groups of words are needed.
(For an 8-percent deletion rate the rate loss is only 0.37 dB.) Thus, if
another simple code with no deletions had the same word error probability, it
might be preferred. Allowable deletion rates are somewhat subjective and
depend on the experiment to which the data belong. The cost in deleted words
(see fig. 3) was not treated as rate loss but instead was marked on the curves
as a parameter.

DESCRIPTION OF DECODING SIMULATIONS

Most of the experiments were performed entirely on a general purpose
computer for the following reasons: First, the gaussian channel is easily
simulated on the computer. Second, decoding equipment for the APP decoding may
best be simulated by a computer. Third, the input to the decoder and the out-
put from it are available to the computer for immediate detailed comparison and
analysis. Fourth, for low bit error probabilities, simulation of the data
stream that includes errors allows a computing economy if only potential error-
causing situations are generated, and the resulting output is decoded and
analyzed. This is explained in detail in appendix E.

The overall experimental procedure for block code analysis is outlined in
the accompanying flow chart. The flow chart has been somewhat idealized so
that the arrangement would automatically generate sufficient data to produce
the complete analysis for a given code at a specific input bit error probabil-
ity. This would not have been difficult to program as an executive routine;
however, the rather unpredictable computer time required to generate suffi-
cient statistics made this method impractical.

Some of the individual blocks identified by reference numbers on the flow
chart will now be discussed.

Read in the input bit error probability, the lowest number of errors per block, N,
representing a potential error -causing situation, the type of code, and an
estimote of the number of runs and the number of words per run, NW, to get
significant siatistical results

No APP decoding Yes

v

Calcuiate bit error probabilities for given received voltage levels, a given
average bit error probability, and a given number of quantization steps

vy
1

r Initialize variables l

"‘ sequence, the actual information bit
v sequence s chosen ali O's for
- = simplicity of calculation

@ Since decoding errors do not depend
on the particular information bit

Generate a given number of errors, N, in the constraint length of the cade under|
investigation with the errors randomly selected (assign | to error bits)

No APP decoding ves

®

y

Select corresponding | and D levels randomly according to their probability
of occurrence from the distribution of correct bits and from the distribution of
error bits separately, depending on the reception of a correct bit and

error bit, respectively

Apply the decoding equations for the type of code and type of decoding to be

tested
v

Summarize the effect of the decoding strategy:

(1} Number of correctly corrected errors

(2) Number of errors not corrected {no action)

(3) Number of correction pulses in information bits

{4) Number of errors generated in information bits (by faise action)
Sum the above quantities ta tatals for @ run of blocks with the same number
of input errors and average error probability

Detailed information Yes

printout on the
decoded word

Print out input error positions and output error positions as well as the above
quantities caiculated for the individual block

4
<

Store error location in the block divided into seven-bit intervals ond accumulate
tofals so that the following table is generated :

Total number of words with a given number of errors
Numbelf of First) Second_ Total number
errors in seven-bit seven-bit of errors
a word word word
1
2
3
q
Total number First Second Total number
of error words seven-bit seven-bit e of error
in the —=— word word words

Abstract further information resulting in the following table :

Number of errors Total number of correction pulses when
in the biock decoding information and panty bits
01 2 3 45 6 78

0o

|

2 Number of words with a given number of
3 correction puises and output errors

(Results are printed after each run)

End of one
run {NW words
generated)

Yes

\ .

Calculate average number of output errors per block and its square for
statistical evaluation of the fluctuations of the data

End of runs(NR
runs with same number of
input errors generated)

Yes

Start another
run

Combine tables 1 and II having identical information for the larger number of
words (equols words /run X number of runs

Results are printed after each specified number of runs as well as after the
final run

ICoIculate the confidence interval of the average number of errors per block l

Confidence
interval within
acceptable limits

Yes No

?

Another run {increase NR) or longer runs
{increase N) to get an average of at least
four output errors/runin order to have a

10

meaningful t test

Final analysis of the code performance for the given number of input errors

per block

Besides the table mentioned above, the following information is printed:
Histogram of the number of output errors in information bits against the
number of blocks with a given number of output errors in the
information bits

Number of blocks with nonzero information errors

Total number of correction pulses

Total number of errors corrected correctly

Total number of correction pulses in parity

Tota! number of errors in information not acted upon
Total number of input error bits 1n the seven - bit words
Sum of the correct land D levels

Sumof error land D levels

A two- dimensional histogram of the number of correction pulses (horizontal)
versus number of information output errors (vertica!) versus total number
of words with a given number of correction pulses and a given number of

Change number of errors in per block

to N+| and start a new series of runs

Final code analysis:

errors in the information bits

Is the error
No contribution of this series
of runs small compared
io the last series?

Yes

—

Calculate bit error probability, block error probability, six-bit word error
probability, six-bit plus parity word error probability, six-bit plus party deletion
rate (odd number of errors in the word), and seven-bit word error probabitity

in relation to the word position in the block

v

Go to beginning for next
bit error probability

(1) As mentioned in the Theory of Operation section the code performances
depend only on the error locations and not on the sequence of zeros and ones
representing the information. For this reason an all 0 information bit
sequence was used. Errors are then easily identified by ones.

(2), (3) The method of generating errors has been described elsewhere
(ref. 2).

(4) This information is collected to give clues as to how codes fail.

(5) This is an examination of the error distribution throughout the
block.

(6) This is a test of the correlation between number of output errors and
number of correction pulses. If a large number of correction pulses occur,
this implies there are errors in the block and this block could be deleted.

(7), (8), (9) These were hand simulated. The activity described in
these blocks serves the purpose of obtaining sufficiently long data runs. The
total run is partitioned so that a meaningful t-test can be applied, and so
that the 95-percent confidence interval is not greater than *1/2 of the mea-
sured parameter for potential error-causing situations of significant probabil-
ity of occurrence. This interval might seem large, but when all experiments
are combined (with different numbers of errors per block and different input
error probabilities), statistical errors tend to cancel. Also, knowing the
average error rates within a factor of 2 is quite adequate when one considers
how small a change of signal-to-noise ratio changes the error rate by a factor
of 2.

(10) For each type of potential error-causing situation, a summary of the
performance is printed. In addition, the input bit stream is analyzed to
assure that the overall distribution of levels is truly gaussian.

(11) Significant information is added together, weighted by the probabil-
ity of occurrence of the different output error-causing events.

The flow chart for the decoding simulation of the convolutional code is
similar except that it also contains other tabulations of interest which will
be discussed in the section on test results. For high error probabilities it
is more efficient and accurate to simulate a gaussian channel directly rather
than use only potential error-causing events. Data points obtained in this
manner have been shown as solid symbols on the appropriate figures.

TEST RESULTS FROM HARDWARE ENCODING/DECODING SYSTEMS

A hardware model of the (24,12) majority equation decoder was used to
determine the performance of this type of coding scheme on the binary symmetric
channel. The test simulated this channel. Data consisted of a pseudo random
sequence generator, and errors were introduced randomly by synchronously gating
a threshold detector from a gaussian noise source.

11

Experimental data have been obtained on this code and plotted in
figure 4. Channel bit error probability, Pg, is plotted against the output
error probability from the decoder. Each point represents a sample size of
500,000 bits. For the (24,12) double error-correcting code, for example, a
channel error probability, P, = 5x1073, gives a decoded output bit error rate

of Pbit = 1073, Error correction performance from a mechanized (73,45) block
code has been obtained and plotted in figure 5. The curves in figures 4 and 5,
however, are drawn from the computer simulation data to show the excellent
agreement.

TEST RESULTS FROM THE COMPUTER EXPERIMENT

The test results are presented and discussed in two stages. First, the
results for the individual codes are shown and second, the codes are compared
to each other and to no coding. For ease of comparison, the second step neces-
sitates superimposing some of the performance curves already given.

Performance of the (15,7) Block Code

Figures 6 and 7 represent the raw data for the code. These figures show
on a bit and on a word error probability basis that APP decoding has a large
error reduction capability beyond that of unweighted (majority decision) decod-
ing, the reason being that APP decoding corrects many of the otherwise error-
causing situations. On the other hand, while majority decoding always corrects
two errors in the block, APP decoding will sometimes make output errors in such
cases, which accounts for as many as 20 percent of the errors made at an input
error probability of 3 percent. For higher error probabilities, even more of
the double error words will be incorrectly decoded, which means that eventually
the curves for APP and majority decoding intersect. However, this happens at
an error rate at which neither decoding scheme is of any use for this code.

The curves have been translated into plots of error rates versus E,/N, in dB.

Figure 8 shows that majority decoding has a very limited gain of only 1 dB at

a bit error probability of 1075, and the coding gain reduces rapidly as

E,, /N, decreases. APP decoding tends to keep the coding gain constant over the
region of interest, with a gain of about 2.6 dB over no coding. Note that
there is little difference in performance between full APP and hard decision
feedback decoding.

Since the simple seventh bit parity check code seems to work so well when
a small deletion rate is permitted, its effect when it is concatenated with the
different codes was investigated. As figure 9 shows, the performance, which
includes the rate loss of 0.67 dB, is slightly worse by 0.2 dB. It will be
seen that this condition prevails for all the codes tested. The data are
included since it might be useful to employ the seventh bit parity check code
before further encoding in a spacecraft, so that if the encoder should fail it
could be switched out, while the parity check would continue to make the
received data useful. Deletion rate with coding is negligible compared to that
of the seventh bit parity check code, and therefore is not shown. While hard

12

decision decoding performs slightly better than full APP when the parity check
code is not included, the situation is reversed when it is included. This is
explained by the fact that compared to hard decision feedback, full APP gener-
ates significantly more single error words while producing fewer words with
more than one error.

It will be remembered that in the cyclic block codes, it is possible to
decode the parity bits first, and then the information bits. This would be a
useful technique for the full APP decoding, since the word error probability
for the second seven-bit word is about half that of the first word. The hard
decision feedback decoding has the same word error probability for the two
seven-bit words, and it would be wasteful of computer time to decode the parity
check bits also.

Performance of the (73,45) Block Code

The raw data and the data converted to the performance curves are shown
in figures 10 through 13. Most of the remarks made for the (15,7) apply also
to the (73,45) code, except that the performance of the latter is considerably
better. There is also a clear advantage compared to the seventh bit parity
check code, at least as far as APP decoding is concerned. For the 3-percent
error probability data, the full APP decoding is clearly superior to hard deci-
sion APP decoding. It was, therefore, the only method used for the l-percent
runs since they must be longer than the 3-percent runs to get statistically
significant data.

Figure 14 shows the word error probability normalized to the first word as
a function of the word position in the block for various decoding systems. The
figure illustrates the effect of the different types of feedback. Data points
for majority decision decoding in which the original bit decision is fed back
(dotted connection in figs. 31(b) and 31(c) in appendix A) are not shown since
they were not measured. However, it is clear that the corresponding curve
(fig. 14) should be the horizontal line I, since the word position in the
block will not affect any coding decisions. Curve II shows the beneficial
effect of hard decision feedback on majority decoding. This effect becomes
even more pronounced for APP decoding with hard decision feedback (curve III).
But the improvement levels off rapidly. Curve IV shows full APP decoding for
identical data. As expected, it begins in a manner similar to the one for hard
decision APP feedback, but the improvement continues all through the block.
Consequently, it is worthwhile to decode the parity check bits first and then
the information bits. Figures 12 and 13 give the performance for decoding all
73 bits. The additional improvement from the extra effort of decoding the
parity bits first can be estimated from figure 14.

Performance of the (24,12) Convolutional Code

The raw data and the data converted to performance curves are shown in
figures 15 through 18. 1In spite of its higher error correction capability the
performance of the (24,12) convolutional code is not much better than that of
the (15,7) block code for majority logic decoding. Figure 19 shows some of the

13

details of the error dispersion. The decoder slides into a bit stream contain-
ing a potential error-causing situation within a constraint length of 12 infor-
mation and 12 parity bits. Figure 19(a) shows that some output error patterns
are 35 bits long. A comparison of figures 19(a) and 19(b) shows that the alarm
indeed reduces the average length of the error patterns. Especially, it
removes the curious peak at a distance of 14 bits. Even though the alarm
reduces the average number of errors per potential error-causing situation, the
actual number of output error packets is increased. For APP decoding the alarm
is not useful. The dispersion for APP decoding, as shown in figure 19(c), is
much larger than for majority decision decoding, but is compensated for by the
much smaller number of output error packets per error-causing situation.
Another fact worth noting is that the shape of the dispersion curves seems to
be independent of the number of input errors per potential error-causing
situation.

Performance of the (44,22) Convolutional Code

The raw data and the data converted to performance curves are shown in
figures 20 to 23. A comparison of figures 13 and 23 shows that for the convo-
lutional code there is a 0.4 dB difference in performance between concatenating
the seventh bit parity check code and not concatenating, while for the (73,45)
block code there is only a very small difference. This is explained by the
fact that errors occur more in bunches in the (44,22) convolutional code than
in the (73,45) block code; consequently, the ratio of double error words to
single error words 1s relatively high. As far as error dispersion is concerned,
the remarks made for the (24,12) code hold, except that the average dispersion
has also increased with the increased constraint length (see fig. 24).

Summary of Test Results

The performance of the codes is summarized in figure 25. To illustrate
the type of results obtained, assume the following condition: The six-bit word
error rate is not to exceed 107°. Then, for no coding the Ep/N, required is
about 10.4 dB, while the undetected word error rate for the simgle parity check
code requires only 7.8 dB, which, of course, includes a 4.8x107° word deletion
rate (due to parity tagging). If one considers this deletion rate negligible,
then, for majority decoding, only the (73,45) code shows a moderate improvement
of 0.8 dB over the seventh bit parity check code. For APP decoding all codes
show an improvement: 0.2 dB for the (15,7), 1.0 dB for the (24,12), 1.5 dB for
the (44,22), and 2.1 dB for the (73,45) code. For all codes investigated, APP
decoding shows about a 1.5 dB gain over majority decision decoding.

Figure 26 helps to visualize the error bunching that occurs after decoding.
The figure is essentially a plot of double error seven-bit words versus single
error seven-bit words. The steepest curve is that of the binomial channel (no
coding). The remaining curves show that there are many mory double error words
after decoding than a binomial distribution of errors would suggest. The
least error clustering occurs in the (73,45) code, when it is full APP decoded.
Consequently, except for the (73,45) code, performance is generally degraded
when the seventh bit parity check code is superimposed on the other codes.

14

ERROR DETECTION FOR BLOCK AND CONVOLUTIONAL CODES

Error detection methods discussed in this section have been tested only
sufficiently to prove that they will be of value when an extremely low error
rate is required with a constant computation rate.

Suggestions for Further Error Detection for Block Codes

The (73,45) code was the most powerful investigated. It gave an advantage
of more than 1 dB over the simple parity check code, with the additional advan-
tage of no deletion. However, it is legitimate to ask if a still lower error
probability can be achieved at a cost of deleting a moderate number of words
likely to be in error. Some preliminary work regarding this question will be
presented here.

The most obvious answer is to try to concatenate two codes. The simple
seven-bit parity check code was concatenated with the four codes investigated
in this report, and, in general, overall performance decreased slightly.

Forney (ref. 3), however, proved that concatenating two powerful codes can
improve overall coding gain but at the cost of increasing complexity at the
encoder as well as at the decoder. To hold spacecraft complexity at a minimum,
it would be desirable to achieve a coding gain at the cost of increasing
earth-based decoder complexity alone. A simple example was given in refer-
ence 2, where the trade offs between error rate and deletion rate were empha-
sized rather than the coding gain, which was small. To repeat the theme, space
scientists often choose to disregard information with a higher error probabil-
ity in order to increase the reliability of their data. The same method seems
applicable to full APP decoding, which leaves, in the «c¢; register, a sequence
of bit error estimates after decoding. For several data runs the estimated
block error probabilities were calculated for each block from cj- A typical
result is shown here. In 800 blocks with a potential error-causing situation
of 7 errors per block, and a 1.5 percent average bit error probability, 83
error blocks occurred. If a block error probability threshold of 10-3 were
chosen, all the error blocks would have been deleted at the cost of deleting

50 percent of the blocks with 7 input errors which were correctly decoded. It
must be remembered that at the 1.5-percent input error probability, only 1 per-
cent of the blocks have potential error-causing situations. To get an idea of
the small deletion rate, 1,000 blocks containing 42,000 data words were decoded
with one input error each. Each of the calculated output block error probabil-
ities was smaller than 107°, indicating that virtually no words are removed
from blocks with few input errors.

The deletion rate for any chosen threshold can be estimated by determining
the distributions of the word error probabilities, given a certain number of
output errors. For high input bit error probabilities these distributions can
be simply obtained by generating the error stream in the more natural way,
where the number of errors in the block are not predetermined. This was done
for a data run with a 7-percent bit error probability, which strains the per-
formance of the nominally four error correcting code. The cumulative distribu-
tions are shown in figure 27. Unfortunately, the distributions are not

15

sufficiently well approximated by normal distributions, or one could now calcu-
late deletion versus error rate for all possible thresholds. However, from the
tabulated output, for a deletion threshold with probability of no error equal
to 0.4, 99.5 percent of the blocks in error after decoding were deleted at a
deletion rate of 29.4 percent. If one is willing to accept this deletion rate
as a simple rate loss, 10 log(l/(l-deletion rate)) = 1.5 dB, the performance of
the code would have improved by 3.3 dB. This might well be a useful technique
of gaining data from space probes when switching to a lower transmission rate
is not possible, and when the error rate would have otherwise been considered
unacceptable.

Another attempt to detect error blocks was somewhat disappointing but pro-
vided valuable insight into the performance of the decoder. It was noticed
that blocks in error seemed to fall into two groups, either they had very few
errors or a large number of errors. It was thought that by applying majority
decoding after the APP decoding of the complete block, which, of course, would
eliminate errors in all the blocks with less than four errors, one would easily
detect blocks containing many errors by the behavior of the sum of the A
equations for each decoded bit. But the majority decoder treated error blocks,
which had 10 errors after APP decoding, exactly as if no errors were present;
that is, each A equation is equal to zero. This means that the decoder
would accept the error stream exactly as it was. It has therefore been demon-
strated experimentally, that when the decoder fails, it tends to decode to the
nearest correct neighbor of the actually transmitted code word. This conclu-
sion is further strengthened when one observes that 9 and.ll error sequences
from the APP decoder are treated as a 1 error sequence by the following major-
ity decoder. Most of the time the majority decoder will therefore add another
error to the others in the above-mentioned cases. While the above method is
not satisfactory for error detection and correction, it would tend to reduce
the block error probability to one-third of what it was before, and it would
reduce the bit error probability by about half if it were simply used for
error correction.

Combining the two error detection schemes may result in virtually error-
free decoding. If, from the error probabilities of all bits in a block, one
calculates the block error probability after decoding and then removes all
blocks that have a higher error probability than a given threshold, one elimi-
nates virtually all blocks with large numbers of output errors. The remaining
blocks are then decoded by the majority decoder, and all remaining error blocks
with less than four errors are corrected.

An Error Detection/Deletion Strategy for Convolutional Codes

The performance of majority decoding of convolutional codes was shown to
be somewhat disappointing. Because of error clustering and rate loss, concate-
nation of the single parity check code did not improve the overall performance.
Hence, a detection/deletion scheme that will take advantage of the error
clustering is desirable.

16

The scheme tested in our simulation is based on the fact that the S
equations can be combined in more than one way to result in a set of orthogonal
equations. For instance, Massey's A equations for the (24,12) code are as
follows:

Ap = S
A2 = S7
A3 = 88 (13)
Aq = Sg

As = Sy + Sy + S

Ag = S5 + Sg + Sy

This set is to be compared with the set of equations used in the hardware
decoder (previously discussed) and also in all our computer experiments (see
eq. (Al5)). The important difference between these two sets of equations is
that the error terms of previously decoded bits (terms with negative subscripts
in equations (Al7) to (A20)) are distributed quite differently among the A
equations. The decoding/deletion scheme is now as follows:

Run two decoders with different sets of A equations in parallel. Delete
all seven-bit words when the outputs from the two sets of decoding equations
differ by at least one position per word. Delete also the two words preceding
the first detection of an error. The reason for the last part of the strategem
is that there is a tendency for decoding errors to occur at the same positions
at the beginning of an error packet. This is understandable, since fewer error
terms are involved at the beginning of an error packet. These initial errors
then cause random generation of further errors. The effectiveness of the last
part of the strategem is shown by the following examples.

Since APP decoding is of more interest, the effectiveness of the above
strategy was tested with the more powerful decoding method. Runs with high
error probabilities were chosen since these data would be of very limited use
without deletion. For the (24,12) code at a bit error probability of 1.5 per-
cent, 12 error words remained after decoding. The deletion strategy caught all
errors at the cost of deleting 1.5 percent of all words. The cost is high
because Massey's orthogonalization by itself results in a higher error rate
than that of equations (Al5), and a word is deleted, of course, when either
decoder makes an error. For a 7-percent input error probability there were
349 error words in 12,000 seven-bit words. With the deletion scheme, only 25
error words remained at a cost of deleting 16.6 percent of all words. Without
the last part of the strategem 116 error words would have remained.

For the (44,22) code only Massey's orthogonalization was available.
Therefore, a second set of A equations was developed (appendix A). For an
input error probability of 5 percent, there were 145 error words in 12,000 data
words. With the strategem only 3 error words were left after 446 data words

17

were removed (22 error words would have been left without the second part of
the strategem).

Depending on the type of decoder, the above scheme doubles either decoder
equipment or computer time. A simplified error detection circuit is shown in
figure 28. Although the circuit has not been evaluated, its performance is
believed to be similar to or better than that of the parallel decoders. The
circuit operates best by connecting to threshold element 1 the set of A equa-
tions, which if used alone would result in the better decoder. This threshold
element alone has control of complementing the S register when it detects an
error. Threshold element 2, with its different set of A equations, only
serves to detect error packets for comparison. Thus, only error packets
caused by the better decoder will be deleted. The decoder will simply mark
bits not checked by the comparator circuit and leave the deletion up to the
user.

CONCLUDING REMARKS

The work reported forms a basis for comparing the coding techniques
evaluated here with other coding and decoding techniques. The decoding methods
described are characterized by a constant computation rate per decoded bit,
independent of the channel noise. The optimum decoding strategy for these
codes, maximum likelihood decoding, has not been investigated, since computa-
tion time per bit is too large to be practical.! For convolutional codes, an
algorithm for sequential decoding? is available, which closely approaches the
performance of maximum likelihood decoding. However, sequential decoding has
a variable computation rate, which might make it ineligible for high bit rate
coding. Sequential decoding of convolutional codes is presently under investi-
gation with the same restrictions imposed on the codes as on those in the
present report, namely, short constraint length and high rate. The most power-
ful of these codes investigated (ref. 6) is a (50,25) code which has a gain
over the (73,45) APP decoded code of 1.9 dB over a range of word error
probabilities from 1073 to 107°.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Sept. 29, 1967
125-23-02-00-00-21

1In maximum likelihood decoding one calculates for each possible message
the probability that a given received message is indeed that message. Then
the message with the highest probability of having been sent is chosen. For
example, the (73,45) code has 24> possible messages. For convolutional coding
one would have to truncate the bit stream, and the number of possible messages
is 2N, where N 1is the number of information bits in the truncated bit stream.
Again the number of possible messages and associated computing time is
enormous.

2Sequential decoding algorithm is a tree search procedure for seeking the
highest probability message in an efficient manner by pruning less likely
branches.

18

APPENDIX A

MAJORITY DECODING AND APP DECODING OF A (24,12)

THREE ERROR CORRECTING CONVOLUTIONAL CODE

Figure 29 shows the structure of the triple error correcting encoder and
decoder. The encoding operation is the following: Information bits are fed
into a 12-stage shift register sequentially, as they come from the source.
Taps on the shift register feed the most recent bit, i;,, and the five older
bits in the register, i;, ip, i3, is, and ig, to a modulo 2 adder (parity
generator). The output of this adder is zero if there are an even number of
ones in its input; its output is one if there are an odd number of ones in its
input.

The output of the adder is the parity bit p;,, associated with informa-
tion bit 1ij;,, and these are both ready for transmission over the channel.
(In the actual equipment they are transmitted in sequence.) It should be noted
that it is the most recent information bit that is transmitted, along with its
parity, so there is negligible delay in the encoder. As soon as 1i;, and pjs
are transmitted, i;3 1is read into the encoder, all bits shifting one place to
the right, and p;3 = i,0i39i,@ighimiy3 and i;3 are ready for transmission.
Encoding continues in this fashion.

At the decoder, received information is fed into a duplicate of the
encoder, but received parity is also fed into the mod 2 adder. The output of
the adder at this moment is denoted by S;,.

By definition, at the encoder, with modulo 2 addition always understood,

Pio = 119i91i@i@igdi, (Al)

Now at the decoder the received forms of these information bits are added to
the parity bit pj,; therefore, if the bits were correct, p;p would be added
to itself, thus getting zero. If one of the bits were wrong, S;, would equal
one; if two were wrong, S;, would be zero, and so on. Therefore S;, 1is
independent of the actual transmitted values of the seven bits of which it is
composed and depends only on the number of errors in the received versions of
those bits, being one if the number of errors is odd, and zero if the number of
errors is even.

In order to analyze this precisely, denote the received bits by

or is zero if the correspond-

eP
k k’
ing bit was received correctly, and one if it was received incorrectly); then

N i v p 1
1, = Lee and P = P @ (the error term, e

i oi i i i i P
S1p = ej@epePefbegbe]belo (A2)

Now, at the moment shown in figure 29, i] is at the right end of the
decoder chain, and the function of the decoder at this instant is to decide

19

whether 1ij is correct or not, and change it if it is wrong. Another pair,
i13 and pi3, will then enter the decoder, i, will be at the right end, and
the same process will decode i,. Decoding will continue in this fashion. In
order to show how i is decoded, make the preliminary assumption that there
have been no errors before ij and pj.

With this assumption it can be seen that when S; was formed 12 bits ago,
the only bits involved that might have been wrong were 1i; and p;, so that

S, = elwel (A3)
Similarly, up to Sg

S, = elmed (A4)

S3 = e%@eg (A5)

Sy, = e&@eﬁ (A6)

Ss = eimel (A7)

S¢ = eiwel (A8)

When the next bit enters the shift register, i; 1is in position 7 of the
register and will be added modulo 2 to the seventh parity and information bits.

Thus,
S, = eroebee] (A9)

Again all bits shift by one and the modulo 2 addition gives

Sg = e%@eg@e%@e% (A10)
Similarly,
Sy = elweloeloel (Al1)
Sio = e%o@ego@e%®egae% (A12)
S11 = e}l@egl@eiaeﬁaeiaeé (A13)
and as in equation (A2)
S1o = e}zeegzee%$e%9e§9e§9e% (Al4)

Another way of seeing how the S equations are developed is to assume
that i, has been correctly decoded into i9, which means that the value of
el is known

1 i) 1 . .
e; = 0 if 1i; = i; correctly received
i
e] =1 if 1{ # 1; error received

20

= 1 to remove the effect of et

Therefore, S;, can be complemented if ef 1.

In any case,
i odi i i i i
Sy = 61@826963@656‘36669812%e§)2

Now the S equation register is advanced one step to the right, thus lowering
the indices by 1

i i i i i
Sll = e10ebeydbesde, 1@6?1
Consecutively removing the term e] (if it is present in the S equation) and

shifting down by 1 will generate the remaining S equations.

The 12 S -equations are now combined to give the following set of
equations:

BN

A]. = Sl = e%EBeIf

i i

A, = S5y + 88 = eleBeBEBegeBeg
i i
A3 = S7 = el®e7®eg
s s - . (A1l5)

i i i i i
Ay = Sg + Sy, = elmespegoegpe] weboel,

i i i
Ag = Sy + S99 = e1®eg®e10®eg®e€0

i i i i
Ag = S5 + S11 = ej@ey@eimeri@ekmel

To simplify the notation for APP decoding, the above set of equations is
written in abbreviated form as
i)
Akzelej eajJ (A16)
J=1

where n; 1is the number of error terms in the given equation minus one. All
addition is modulo 2. The important thing to note about this set of equations
is that it is '"orthogonal in 1i;"; that is, e} occurs in each equation, and no
other term occurs more than once in the whole array. This orthogonality permits
use of the following decoding rule to determine el; that is, to determine if

i] is right or wrong, If more than three of the six equations are equal to 1,
then i1 1is wrong (et = 1) and must be changed.

It will be shown that this rule will decode i{ correctly if no more than
3 of the 24 bits 1i;. . . py» are wrong. (In fact, only 22 bits are con-
cerned, since pj and pg are not in the equations.) To verify that the rule
works is simple. If i; is right and one, two or three other bits are wrong,
there can be at most 3 ones among the equations, since each of the other bits
occurs in only one place. But 3 or less ones is not enough to change ij. If
i] is wrong, it makes all six equations one, and if i and another bit or
two are wrong, the other bits restore one or two of the equations to zero but
leave at least 4 ones. Each of these cases gives more than 3 ones and thus
leads to correcting ij.

21

Thus i; will be decoded correctly if not more than 3 of the 22 bits are
wrong. Actually some combinations of more than 3 errors will also be decoded
correctly. Now, when it is decided that i; is wrong, complement it and the
values of S, Sg, Sg, Sigs S11, and Syo. This removes the el term. Thus,
before a new pair of bits is entered, the effect of the i{ error has been
eliminated, and for decoding 1i,, the decoder is in the same state it would
have been in if i had been correct. As far as the decoder is concerned,
there have been no previous errors.

The S register resetting operation is called hard decision feedback.
Assume that the decoded bit is always decoded correctly. If e 1is called

the possible error in the output bit, then S;, after decoding should be
rewritten as

o i i i 1 i
S192 = e1®e2®e3®e5®e6@elzee€2 (A17)

and shifting by one space, S;; actually becomes

Si11 = e&ae%@e%@eﬁ9e§$e%l@e€1 (A18)
likewise,

Sig = e?leegeae%eae%@ei@e}()@e?o (A19)
similarly down to Sj:

S; = e(_)l O@eggeae?geec_)e@e?g@e%@e}f (A20)

In other words, the S equations actually depend on previously decoded bits.
This explains why once a decoding error is made, more errors tend to be made
even though only correct bits may subsequently enter the decoder.

Figure 30 shows the APP decoder which includes an analog circuit for com-
puting the weighting factors. The weighting factors for the gaussian channel
are computed as follows: The incoming voltage levels V for each bit are
passed through a nonlinear amplifier that has an output
-logg{coth[(V/c?) - |V|]} where V and o? are the average received voltage
and its variance. The top analog shift register has as inputs the set of «cl
and the bottom one has as inputs the set of cP. The kth analog adder above
the analog shift registers has as inputs the set of c¢'s to form Cy. The out-
put of this adder is fed to a nonlinear device that has an output of
2 logg[coth(x/2)] for an input of x. This is the weighting factor for the
parity check Ayp. The threshold T is formed by taking half the sum of the
weighting factors as called for by equation (8). Since the analog circuit
computes the correct set of weights and the threshold T at any instant, it is
combined with the decoder of figure 29 to give a complete APP decoding circuit.

22

APPENDIX B

MAJORITY DECODING AND APP THRESHOLD DECODING OF THE

(15,7) BOSE-CHAUDHURI CODE

Decoding the (15,7) Bose-Chaudhuri code will be described as an example
of threshold decoding of a block code. This is a type of cyclical block code
that corrects two errors in a block. Figure 31 shows the structures of the
encoder and the decoder. The encoding operation is as follows. Information
bits are loaded in parallel into a seven-stage shift register. Taps on the
shift register feed the most recent bit 1i;, along with 1i5 and i; into a
modulo 2 adder, and the output is transmitted as well as fed back into position
7 of the shift register. The shifting and transmission continue through infor-
mation bit i5. The process is continued until eight parity bits are
generated, namely,

ik = ik—1®ik—3®ik—7’ k=8, 9, ..., 15 (B1)

After all 15 code digits have been shifted out, the 7-stage register once again
contains the original information, i to isy.

At the decoder, received information is fed in parallel into a 15-stage
shift register. Taps lead to four mod 2 adders to calculate the parity equa-
tions. Majority decoding, shown in figure 31(b), is ordinarily used. The
equation

Al = ig@ijeig
can be reduced to the transmitted information plus error terms
Ai = i5®e5®i7®e7®18®e8

but from equation (B1)
il = i5@i7®i8
thus '
Al = i1®e5®e7®e8

Writing all parity equations in the same manner results in

Ay = i@)
Ay, = ijeesoesoeg

Ay = 11%e3®e,®e) | (B2)
Az = iPepPe;Peyy

Ay = 10egde]39€]5

23

The majority decision rule is i? =1 if
L
g A{ > 3 (B3)
To produce a threshold decoder which performs exactly like the majority decoder
(see fig. 31(c)), connections from i; are added. The first parity equation
for this decoder becomes
Ay = Ai@iIEBel
= 11@esdePegdl e,
= e10eoe,beg
Similarly,
A) = e1desbe,Peg
A2 = €1Pex0eydber o
(B4)

A3 = e1@esde) gPery

Aq = e19egde; 3dbe 5

J

The A. are orthogonal in e; and are independent of the value of the trans-
mitted bit. If there are an odd number of errors in the equation A; = 1; and
if there are an even number, A; = 0. The decision rule with these parity check
equations 1is:

If 4
) A; >3 (B5)

then 1] 1is assumed to be in error; hence, Shange it to produce i?, the out-
put bit, which still may contain an error (ij # i;).

This decision rule is of exactly the same form as that for the convolu-
tional code discussed earlier. If all the received bits were correct, each
equation for A; would add to 0. If one or two of these bits were wrong, at
most two of the A; would equal 1, the threshold would not be exceeded, and
the bit would be correctly decoded.

After decoding the first bit ij, the bit is corrected and circulated to
position 15. Identical decoding rules are applied to decode ié. The process
continues until all information bits are decoded. The formal proof for the
above is given by W. H. Peterson (ref. 4). However, it is simple to advance
the indices of the parity equations in steps of 1 (mod 16) and to show by sub-
stitution that the equations always form orthogonal parity checks for the bit
which is presently in position 'one' in the decoder. Even the parity bits can
be decoded in this manner by shifting a full cycle, a fact which is shown to be
useful in the discussion of the test results.

24

Figures 31(b) and 31(c) show dashed and solid feedback lines. It is not
at all clear which connection should result in the better performance.
Clearly, when the number of errors in the block does not exceed the error cor-
rection capability, the decoder will eliminate all errors with both types of
feedback. For potential error-causing situations, it was found that the feed-
back of the decoded value will result in a lower average error probability.
This is the only feedback connection of the binary shift register explored in
connection with APP decoding and will be called binary hard decision feedback.
The APP threshold decoder is shown in figure 32. The operation of this circuit
is so similar to that in figure 30 that no detailed explanation should be
necessary.

For completeness, the encoding and decoding equations for the (73,45) code
are given. Encoding:

T T Ty s® g 35y o B o Bl (B P k3 (B6)

where
i =46, 47,

., 73
and decoding:
Al = i})
Ay = 130i]191)501)6®1309137014 30146
. 1 . 1 . ! . ! . 1 . 1 . 1 . 1
Az = 19®13915,917gP135914 1914917,
_.' .t < 1 . ! . ! | . 1 . f
Ay = 1159116%9120P127913391369164P1656
« 1 . 1 .t « ! . 1 . 1 « f - 1
Ag = 1291g®Pi13%i;9Pi,Pi50915,P16)
(B7)
PR B | <t . . 1 -t .t .t
Ag = 150112811 8P12191,9015101590173
« 1 . 1 . 1 I I] « 1 . !]
A7 = 1g@11,@1) 7014501y 7@15501698170
. F .1 .t . ! . 1 < 1 . ! . f
Ag = i70110@13g01400148@1lg201630167

P .1 -t . ! P . 1 . ! « 1
Ag = 1y®1320134@140i56015701i61P168

] .t . ! . ! P | <t . ! <! !
Alp = 1290131013901530154015801650171
The decision rule with these parity check equations is:

If

9
L Ay 25

i; is assumed to be in error; hence change it to produce ij.

25

APPENDIX C
DERIVATION OF THE APP DECODING ALGORITHM

For optimum threshold decoding the rule is chosen to make the conditional
probability that ep is either 1 or 0 (iy 1is in error or not) a maximum given
the set of J parity checks.

Pr(ep=V/{Ai}) maximum (Cla)
In other words, choose e = 1. Then

Pr(ep=1/{A;}) > Pr(e,=0/{A;}) (C2)

From Baye's rule, equation (Cla) is rewritten
Pr(ep=V/{A;}) = [Pr({Aj}/ep=V) » Pr(ep=V)]/Pr({A;}) (C3)
From the orthogonality on ep of the A; and the digit to digit independence

J

Pr({Ai}/ep=V) =]7 Pr(A;/e =V) (c4)

1i=1

When equations (C3) and (C4) are substituted into (C2) and the common term
Pr({A;}) is cancelled:

J J
Pr(en=1) IT Pr(Aj/ey=1) > Pr(ey=0) II Pr(A;/e,=0)
i=1 i=1
or
J
!7 Pr(A;/ep=1)/Pr(A;/e,=0) > Pr(ep=0)/Pr(ep=1) (Clb)
1=1
Define
Pr(ey=1) = po = 1 - q, = error probability of bit e, (decoded bit)
p; = 1 - q; = probability (odd number of 1's among the noise
bits that are checked by A;, exclusive of ep)
then
Pr(Aij=0/ey=1) = Pr(A;=1/ep=0) = py (C5)
Pr(Ai=1/em=1) = Pr(Ai=0/em=0) = q; (C6)

26

Since A; is either 1 or 0 each factor in equation (Clb) is in one of two
forms:

If A; =1
2A;-1
Pr(Aj=1/ey=1)/Pr (A;=1/e=0) = qi/pj = (a3/pi)” * (c7)
If A; =0
2A;-1
Pr(A;=0/e,=1)/Pr(A;=0/e,=0) = pi/qj = (qi/pi) * (C8)
Equations (C7) and (C8) are used to rewrite (Clb) as
J
2A5-1
IT (q;/p;)"* © > a4/p,
i=1
or
J 2As J
IT (a3/p)"" % > IT a;/py (Clc)
i=1 i=o
Since the e? are independent random variables with
B_1) - 1 - Bo) = +8
Pr(ej-l> =1 Pr(ej—0> = yJ
it can be shown that (see ref. 1)
1 M
pi = > 1 - (1 - ZYJB> (CQ)
j=1

where nj is the number of error terms in Aj exclusive of ej. Note that
the product does not include a term for the encoded bit ep; also note that
equation (C9) is also true for po = (1/2)[1 - (1 - 2y%ﬂ = y]. Now

nj 8
1+ 7 (1 - 2v;
— = — (c10)
1 - I 1 - 2y->
A j
j=1
Since summation is preferable to multiplication, define:
B . (i} @)
Cj = -loge(l - 2vj (c11)
Then n:
RERPROY QR (C12)
231 2 .50

j

27

and

q .
2 = coth[(1/2)CT] (C13)
Po
Taking logarithms on both sides of equation (Clc)
J . J .
q q
} 24 loge — >) loge — (C1d)
i=1 Pi i=0 Pi
and using equations (C12) and (Cl13) yields
! o 1 1 L
Z 2A; log|coth > Z C? > 5 2 log[coth(i—c%>J + Z 2 log|coth 5 Z Cj
j:l J:l J:]_ J:]_
If the weights are defined, the threshold equation becomes
J 1 4
LowiAy > 5) Wy (Cle)
i=1 i=o
Further, if
J
1
T = ? Z W1
i=o
the final form of the APP threshold decoding equation becomes
L wiA; > T (C1£)

28

APPENDIX D

CALCULATION OF PERFORMANCE MEASURES FROM AN

ENERGY EFFICIENCY STANDPOINT

To compare different coding schemes consistent measures of performance
must be found, and finding them requires first a definition of the channel
under consideration. The following normalizing assumptions are thought to be
reasonable for interplanetary channels in the S-band, where the dominant
source of noise is the receiver, and where provision for bit rate changes must
be made because of the changing distance between the spacecraft and earth.

(1) An identical modulator, transmitter, and receiver system will be
assumed for all coding schemes considered. (Thus rate 1/2 codes will not be
penalized for their greater bandwidth requirement for the same information
bit rate.)

(2) The system delivers a stream of bit log likelihood ratios to the
decoder (matched filter reception); that is, the individual bit error probabil-
ity can be calculated from the received voltage at the bit decision time.

(3) The transmission rate of information is assumed constant.

(4) The noise is additive white gaussian and changes in average power are
very slow.

The received signal power varies very slowly with time. Its magnitude at
any particular time will be denoted as S. The time required to send a single
bit is T. The energy per transmitted bit is then ST joules. The noise
power has a spectral density of Ny, W/Hz. The total noise power in a band of
f Hz 1is proportional to Ngf. Since the bandwidth is inversely proportional
to the bit duration, the noise power in the transmission spectrum is also
proportional to Ng/T. The noise energy per bit is therefore Ny, independent
of the bit duration. A convenient normalized variable for the calculations
to follow is the signal-to-noise energy ratio per transmitted bit

E/No = ST/N, (D1)

It is well known (ref. 5) that under these conditions, the output of the
matched filter receiver is a gaussian random variable y whose mean is posi-
tive or negative according to whether a 0 or 1 was sent in the corresponding

time period.

Under these conditions the average bit error probability is

o X2
P = — e 2 dx (D2)
Jox) pE
NO

29

where E/N, 1is the linear signal-to-noise power ratio. For reference for
large E/Np this is approximated within 1 percent by

E
-
1 e o E
P —— for =— > 5 (b3)
©oNwm [EE No
No

The probability that a received bit i! is in error, given its received

voltage level, is, from figure 33, J
_vl-w?
e 207
Pe = T (V[WMZ _ ([V[]? (b4)
202 202
55 + e o

Having characterized the channel, one can now proceed to describe the
most often used performance criterion for codes, that of coding gain. In
short, coding gain is the increase of the received power that would be
required to achieve the same bit error probability for no decoding as for
coding.

With the relationship of equation (D4), a graph can be drawn of bit error
probability versus E/N; (fig. 34) corresponding to the case of no coding.
In figure 34, the performance of a hypothetical code is also shown. It can be
seen that the coding gain is reduced as E/N, becomes smaller, and eventually,
the code performs worse than no coding. This is an unfortunate characteristic
particularly of simple codes, where otherwise they would be most useful, they
are least effective.

For the above comparison, the code performance curve is drawn in the
following manner. It is assumed that the decoded bit versus input bit error
probabilities have somehow been determined (1).! Then by means of figure 34
for a given input bit error probability (1) E/N, is read (2).

Since codes characteristically send more than one bit per information
bit, a rate loss is added (2-3)

(E/No)p = (E/Ng) + 10 log(1/R) (D5)

where R is the ratio of information bits to information plus parity bits
transmitted. This is the E/N0 which would be received by the identical
communication system and information rate if no coding were used. For this
increased signal-to-noise ratio the input bit error probability (4) is lower
than the input bit error probability to the decoder (1). Only if the decoder
reduces the output bit error probability (5) below this value can one speak of

INumbers in parentheses refer to encircled numbers on the figure.

30

a coding gain. Above (E/Ng)r the output bit error probability is entered (5).
And the horizontal distance between the point just drawn and the curve for no
coding is the coding gain (3-6).

While the bit error probability criterion is sufficient for selecting a
small number of interesting codes for a given application, detailed simulation
is required for the final choice. As explained in the text, word error proba-
bility for six-bit words has been chosen as the measure of performance.

Figure 35 shows the steps of the calculations for the specific example of the
(7,6) parity check code. The word error probability curve for no coding is
drawn by calculating the probability of errors occurring in a six-bit word
(1-P(OE)) for given bit error probabilities (1). The calculated point (3) is
then drawn vertically above the E/N, (2) for the selected bit error probabil-
ity. The coding performance is calculated in the following steps. Select a
bit error probability (1). Find the corresponding E/Ng (2) and add the rate
loss of 10 log(7/6) = 0.67 dB (4). The new increased bit error probability is
found (5) at which the bits will be received from the same transmitter at the
7/6 higher bit rate. Calculating the probability of an even number of errors
in a word received at that average bit error probability results in the word
error probability (6). However, parity tagged words are discarded. Therefore,
one must calculate the word error probability on the remaining words, which
increases the word error probability by a factor 1/(1-P(odd number of errors))
(7). Also, the information rate has decreased by the additional rate loss of
10 log(1(1-P(oddE))) (8). However, this small additional loss is not shown on
the above curve, since E/N, 1is the received signal-to-noise energy ratio per
information bit before decoding; instead, the deletion rate is shown as a
parameter in the text. From the two curves thus generated, one can determine
the coding gain for any desired word error probability.

31

APPENDIX E

BIT ERROR CALCULATIONS FROM ERROR PACKET SIMULATIONS

For a low bit error probability, block codes and convolutional codes
correct most of the errors. To obtain a sufficient statistical sample a very
long bit stream would have to be examined. It would take hours of IBM 7094
computer time to evaluate even one code at one bit error probability. There-
fore, a scheme was developed to calculate code performances by examining only
potential error-causing situations.

For block codes the method is very simple. The bit stream is divided
into blocks of a given constraint length (e.g., 73 for the (73,45) code). A
given number of input errors are introduced randomly into blocks of data and
the average number of output errors are calculated simply as the weighted
average

i
- ey i El
P = 1 S[PG)/Npy] (E1)
i=1i .
min
where
Pbit bit error probability
iC constraint length
imin minimum number of errors which can give output errors

P(i) probability of 1 errors in a block
N block length

€ average number of output errors in i, given 1 input errors

In practice only a few terms are needed since P(i) decreases rapidly with
increasing i for the error probabilities under consideration.

For convolutional codes, the calculations are not so direct. Intuitively,
it is clear that a convolutional code compared to a block code with identical
constraint length and identical error-correcting capability will encounter
error-causing situations more frequently. A model will be developed which is
sufficiently accurate to predict the average number of error-causing situa-
tions which are encountered when N information plus parity bits are
received.

Consider a sequence of N zeros and ones where the zeros represent cor-
rectly received and the ones represent error bits. If one counts the number
of errors contained for each constraint length, a second sequence results.

32

This is shown in an example for a constraint length of 24, where it is
assumed that all zeros border the sequence which is shown.

. 000000001010000010000001
00000000112222223333333444444444332222221111111000000

Each number on the last line represents the number of errors within the slid-
ing constraint length. Neglecting end effects for large N, the second
sequence has the same number of members as the first, namely, N. The average
number of times each member of the sequence occurs is

N; = P(i)N (E2)

One is interested only in how many times a maximum occurs, representing an
error-causing situation. One must therefore calculate the average number of
shifts that one stays inside an error cluster of a given number of errors.
(In the above example, the 4 appears nine times in sequence.)

Jj=ig-i+l

d. = — (E3)
(52
i-1
where d; is the average number of shifts within a cluster of i errors.
Equation (E3) can best be understood when it is derived for an example,
(i =4, i, = 24). It is assumed that when the error condition is first
reached the other 1i-1 error bits are randomly distributed over the con-

straint length. When the first and last bit are in error (d = 1) the remain-
ing 1i-2 errors may be located in any order in the i.-2 bits. There are

<1C£2> ways to distribute the errors. When the last bit in error is in the
second position (d = 2), there are <IC£3> ways to distribute the remaining two
error bits, etc. Hence, the average distance is

a3 e AG) s e 20() - a(3)

d’+ = - I = 6.0
(5°)
3

where <§3> is the total number of ways the 1-1 = 3 errors can be distributed

over the 23 positions. It can be shown by mathematical induction that
equation (E3) can be reduced to

dj = iJ/i (E4)

which is the average distance between errors, provided there are i errors

in ic. When clustering of more than i errors in i, has negligible

33

probability of occurrence compared to 1 errors in i., the average total
number of error-causing situations is from equations (E2) and (E3):

Ni/dj = P(i)N/d; (ES)

When #€; 1is the average number of output errors in N*R information bits,
and R 1is the signaling rate (equal to 1/2 for the codes considered in this
report), then

Average total number of errors
in N information bits caused = NP(i)e;/Rd; (E6)
by error bursts of length i

As the example shows, a peak is reached in steps of one. Hence, when the peak
is of magnitude 1 on the average, it is flanked by 2d; (i-1). These must be
subtracted to count peaks of magnitude 1i-1.

Ni_y = [P(i-1)N - 2NP(i)]/d;_, (E7)

and

Average number of errors in _
N information bits caused by = {N[P(i-1) - 2P(i)]/Rdj_,}te;

error bursts of length i-1 (E8)

For 1i-2 error bursts one would have to subtract terms containing P(i-1) and
P(i). However, equation (E8) is sufficiently accurate, since P(i) decreases
rapidly as 1 increases for the error probabilities considered. It is also
valid for the highest clustering that may be considered, since P(i+l) = 0
for i + 1 > i.; thus, the equation for convolutional codes for bit error
probability is:

ic . -
Z Ej_ I:P(l) —_ZP (i+1)] (E9)
i dj

As in equation (E1) only the first few terms need to be considered.

34

REFERENCES

Massey, James L.: Threshold Decoding. M.I.T. Press, Cambridge, Mass.,

1963.

Lumb, Dale R.; and Neuman, Frank: Error Rate Reduction of Parity Checked
Telemetry Data by a Likelihood Deletion Strategy. NASA TN D-3576, 1966.

Forney, G. David, Jr.: Concatenated Codes. Tech. Rep. 440, Res.

Electronics, M.I.T., Cambridge, Mass., Dec. 1, 1965.

Peterson, William Wesley: Error-Correcting Codes. M.I.T. Press
Wiley and Sons, Inc., 1961.

Baghdady, Elie J., ed.: Lectures on Communication System Theory.

McGraw-Hill Book Co., Inc., 1961.

Lumb, Dale R.; and Hofman, Larry B.: An Efficient Coding System
Space Probes With Specific Application to Pioneer Missions.
NASA TN D-4105, 1967.

Lab. of

and John

for Deep

35

36

— Information bits

Data source ~ Information bit register 1

— Parity check bits

(a) Encoder.

| -
H 1 —_— - K
Lr}Igrmatlon_K__[__Information bit register }——#@i}——b

Parity Pk!
check
bits

S computation

L ‘ E S complement] #

S reglster

r__ ' ~ Majority logic element i

(b) Decoder.

Figure 1.- Block diagrams of rate one-half convolutional encoder and
threshold decoder.

37

Probability that a received bit is in
error, given its voltage level

1
~—
i

V = Voltage levei of the received bit in
units of V

] l 1 I
O .02 .04 06 .08 .10 .12 .14
v

(a) Exrror probability of a given bit versus voltage received.

1.5

)

w Lo

Cj=-log [I-Z Pr (elﬁ

1 i 1
0 A .2 3 4

Pr (] =1)

obm—_____T=_

(b) Calculated ¢y from the error probability of the bits.

3

coth(% C;)

W= Ioge[coth(lzci)]

(c) Calculation of the weights.

Figure 2.- Illustration of the calculation of weights.

38

SR

Output word error probability

Figure 3.- Performance of parity error detection compared to no

1072

3
(¢]

]
H

9
(3]

jo-7L-

— — — No coding

— -—(7,6) Parity check code

(Deletion rate shown
as parameter)

—--— (7, 6) Parity check code

I
2

(Deletion rate shown
as rate loss)

4 6

Normalized signal-to—noise ratio, E /Ny ,dB

coding.

39

40

IO_2 — - —
1073 — —
: | p—
i, 3
210 T — —
S 8 i
5 Bo
5 — é%]
& | o ¢ _
°/ o o

— Note: 500,000 bits/sample.

e For comparison of data fit,

10 " — the curve has been taken from
figure 15 -

o7l 1L 11 1] | [| N I N A B
.5 | 2 4 6 8 10

Channel bit error probability, percent

Figure 4.- Performance of majority decision (24,12) hardware decoder.

o I

-1
(A S p | T 7 T 173
1072 —
|0—3 — j
>
3 .
o
S 4
& 10 "~ .
o - .
@ |]
=
107° —
— Note: Sample size > 6x105 7]
6 For comparison of data fit,
10 [— the curve has been taken]
- from figure 10 —
107 I I I l I I N T
.5 1 2 4 6 8 10

Channel bit error probability, percent

Figure 5.- Performance of the majority decision (73,45) hardware decoder.

41

42

Bit error probability

O 771 71771 | | | T I _

j

-

5° —]

_ O Majority decision decoding]

< Full APP decoding B

r—- —
o3 N T T W N L T R T A T

-5 | 2 4 6 8 10

Channel bit error probability, percent

Figure 6.- (15,7) block code - bit error rates.

Six-bit word error probability

ot T T T T I ! 1T 1 1 1 13

O Maijority decision decoding
A Majority decision decoding
concatenated with (7,6) code
D Full APP decoding —
O Full APP decoding
concatenated with (7,6)code
< Hard decision APP decoding -]
0O Hard decision APP decoding
- concatenated with (7,6)code -

o7 I T I | | | I I I I
.5 | 2 4 6 8 10
Channel bit error probability, percent

Figure 7.- (15,7) block code - six-bit word error rates.

43

44

Bit error probability

ot

10-2

10-3

104

10-5

10-6

I | I 1

s
_ N
~ ~ — — No coding

~N O Majority decision decoding

| ~ N < Full APP decoding
AN 0O Hard decision APP decoding

=
o

| { l | |
0] 2 4 6 8 10

Normalized signal-to-noise ratio, E/N,, dB

Figure 8.- (15,7) block code - bit error rate performance.

|

107!

- | I I I —]

1072 —

[| -
i . —
’,l
; 1073 —
) — _
1 | —
e D
! =
i 5 B]
(o
b o
! [}
| S -
i [
| 21074 —

(-4 - —
E | —
o
z - -
=
% | -
>
107 —
| —— ——No coding _
——-——(7, 6) Parity check code (Deletion \
rate shown as a parameter) \
— O Majority decision decoding '\]
6 A Majority decision decoding \

10 concatenated with (7, 6) code \ —
| ~ O Full APP decoding \ \ _
' DN Full APP decoding \

: — concatenated with (7,6) code \ T
] ¢ Hord decision APP decoding \
| — O Hord decision APP decoding —
3 concatenated with (7,6) code
| |0‘7 I | | I I

o] 2 4 6 8 10 12

Normalized signal-to-noise ratio, E,, /N, ,dB

Figure 9.- (15,7) block code - six-bit word error performance.

iR

46

S

Bit error probability
&

O Majority decision decoding
<& Full APP decoding
& Hard decision APP decoding

[. | ! | T N I

1 2 4 6 8
Channel bit error probability, percent

Figure 10.- (73,45) block code - bit error rates.

[F=SCE X

RIS

»

pe vy

Six-bit word error probability

5,
[

S,
H

O Majority decision decoding

A Mojority decision decoding
concatenated with (7,6)code

N Full APP decoding

10 ﬂ O Full APP decoding .

concatenated with (7,6)code

< Hard decision APP decoding

B 0 Hard decision APP decoding

concatenated with (7,6)code

A | | | I T I N
5 | 2 4 6 8 10

Channel bit error probability, percent

Figure 11.- (73,45) block code - six-bit word error rates.

47

48

Tl
S\\ I ! I I I -
B ~ — — No coding _
O Majority decision decoding
| < Full APP decoding _
IO'Z':- _
1073 —
B \ -
o \]
z \
: | \ .
8 \
i = \ -
Iy \ .
i \
- \ -
105 [— \ _
N \]
i \ N
\
- \ |
ot \\ =
= \ —
= \ -
\
- \
10773 é 411 tls el; IlO \ 12

Normalized signal-to-noise ratio, Ey/N,,dB

Figure 12.- (73,45) block code - bit error rate performance.

RS

it

ERE T

T T TR

ST TS

l _l
o' | -
- —
10-2 }— —]
Tl == —
> [— —
E — p—
o
L
o —
2 -
S oma —
[+ — —
'E — —
o
z - —
;"E.',
x - —
&
1075 |— |
—— ——No coding \ N
[——-——(7, 6) Parity check code
(Deletion rate shown as
1078 — a parameter) _
B O Majority decision decoding \ 1
— A Majority decision decoding m
| concatenated with (7,6) code \]
O Full APP decoding '
| b Full APP decoding \]
concotenated with (7, 6) code
|0‘7 l I I | l
(o] 2 4 6 8 10 12

Normalized signal-to-noise ratio, Ep/Ng, dB

Figure 13.- (73,45) block code - six-bit word error rate performance.

49

Decoding with original bits fed back, I

7 — : O——0O- 0]
P = 3% majority decision decoding
66— with hard decision feedback, I
5—
w 4-—
2
% P, = 3% hard decision APP
= o NAr ecision
S 3 € decoding, III
o
S
o
§ e P, = 3% full APP decoding, I
©
[+3)
N
©
£
S
=z
| J—
09 —
P, =1% full APP decoding, I/
.08 — €
.07 — o
06l I I | | | | |
|

2 3 4 5 6 7 8 9 10
Nth seven-bit word in the block

Figure 14.- Normalized seven-bit word error probability as a function
of the decoding sequence.

Bit error probability

O Majority decision decoding
O Hard decision APP decoding

i0~7

2 4 6
Channel bit error probability, percent

Figure 15.- (24,12) convolutional code - bit error rates.

51

52

al
(&)

Six-bit word error probability
S,

O Majority decision decoding
A Majority decision decoding -
concatenated with (7,6) code _
© Hard decision APP decoding
O Hard decision APP decoding
concatenated with (7,6)code

T

o N | 1 1 v & 11 1_|
5 | 2 4 6 8 10

Channel bit error probability,percent

Figure 16.- (24,12) convolutional code - six-bit word error rates.

%@:‘r’"—?ﬁff‘fﬁ?@‘f“’?’? e E o

-l
107 I I | | |]
~
s . _
~ — —No coding
— ~ . . .]
~ O Majority decision decoding
u ~ ¢ Hard decision APP decoding |
10-2— -
10-3 |-]
z — —
= - _
(=
L
[o]
a 104}]
s L N
s \ _
@ \
n \]
\
10-5 \ —
B \]
i \ i
n \ -
\
10-€ |- \ -1
| \ _
\
07 | | I | L\
0 2 4 6 8) 12

Normalized signal-to-noise ratio, Ep/Ng,dB

Figure 17.- (24,12) convolutional code - bit error rate performance.

53

1072

6I
(&)
|

1074

Six-bit word error probability

9
6]
|

— 5%

B \
——— ——No coding
_g| ——(7.6) Parity check code (Deletion

10~ }— rate shown as a parameter) \ —
u Majority decision decoding \ \

B Majority decision decoding \

concatenated with (7, 6) code \ —

Hard decision APP decoding

Hard decision APP decoding \
concatenated with (7, 6) code

-7 | | | | |
10 0 2 4 6 8 10 12

Normalized signal-to-noise ratio, E,/N,,dB

o< DO

Figure 18.- (24,12) convolutional code - six-bit word error rate performance.

54

TR SR AR S F A R I o - e

Percent of events with a given D

SS

Number of inpuf,
errors per potential
error-causing event

Average number
of output errors
per potential
error-causing event

Percent of decoded
potential error-
causing events

with no errors out

a4
A D

. :

8

2

16

20 24

3.2
4.1
4.9

28 32 | 36

D = Number of bits between first and last decoding errors

4

8

12
D=Number of bits between first and last decoding errors

Number of input
errors per potential
error-causing event

(a) (24,12) code; majority decision decoded without alarm.

Average number
of output errors
per potential
error-causing event

33.3
6.7
5.5

Percent of decoded
potential error-
causing events

with no errors out

o4
55

2.5
3.3
4.2

(b) (24,12) code; majority decision decoded with alarm.

33.3
14.7
3.1

Figure 19.- Error dispersion for the (24,12) convolutional code.

9§

o

>

Percent of events with given D
[

[T

1

A ~
K2

Number of
input errors

Average number
of output errors

Percent of decoded
potential error-

per potential error- per potential error- causing events Symbol
causing event causing event with no error out
072 98. | a
48 91.8 AN
7 126 83.6 o)
O
()
OA)
f
oo A OA
(YN [OJAAA ')1; }
alon AQLOA A AN £)
: A M)
II an'n II \A A £ A\‘ .A‘ o‘ ’o O o‘\A.A.AéA.A /A A.AAA.A.A AT TATA A‘A
40 48 56 64

D— number of blTS between flrst and last decoding errors

{(c) (24,12) code;

APP decoded without alarm.

Figure 19.- Concluded.

»,

e

o

Bit error probability
B

O Majority decision decoding
< Hard decision APP decoding

| I | I N I
| 2 4 6 8 10
Channel bit error probability, percent

Figure 20.- (44,22) convolutional code - bit error rates.

57

58

0 —r—5 71 [1]
-2
10 |- —
N]
0> _|
>
E
o
e}
[o] — —
a
5, -4
210 —
(o4 -
° .
o
; —
=
x
173 -
=5
10 —
lde O Majority decision decoding]
= A Majority decision decoding _
| concatenated with (7,6)code _
< Hard decision APP decoding
O Hard decision APP decoding
concatenated with (7, 6)code
g [B | 1 N
.5 | 2 4 6 8 10

Channel bit error probability, percent

Figure 21.- (44,22) convolutional code - six-bit word error rates.

10~! —
y I I [~
— ~]
\\ — — No coding
~ O Majority decision decoding
| < Hard decision APP decoding]
10-2—]
103 _
Py
ig—‘ - |
8 \
G 1074 \ —]
s L \ B
] \
s I \ n
\

10-S |— \\ |
| \ _
| \ -

\
\
-6 —

10 — \ —
| \ —
- \ —

\

10-7 | I | I I \

0 2 4 6 8 10 12

Normalized signal-to-noise ratio, E,/N,, dB

Figure 22.- (44,22) convolutional code - bit error rate performance.

59

T | | l b
102 |— —
1073 —
L _
> — -
% — —
o
el
o | —
a
§ Tophd == —
(] b— —
= -
[o]
z - —
=
x | —
x
1072 |-]
——~——No coding
[~ ——-— (7, 6) Parity check code]
(Deletion rate shown as
1076} a parameter) _
B o] Majority decision decoding \]
— A Majority decision decoding \ 7]
= concatenated with (7, 6) code —]
0 Hard decision APP decoding \
L O Hard decision APP decoding _
concatenated with (7,6)code
107 I l 1 |

0 2 4 6 8 10 12
Normalized signal-to-noise ratio, Ep /Ny, dB

Figure 23.- (44,22) convolutional code - six-bit word error rate performance.

60

Number of input

Average number
of output

Percent of decoded
potential error—

errors per potential errors per potential causing events Symbol
error-causing event error-causing event with no error out
[.74 58.5 O
3.3 29.2 O
7 4.6 1.0 A

Percent of
events with given D

D o Number of bits between first and last decoding errors

Figure 24.- Error dispersion for the (44,22) convolutional code majority decision decoded with alarm.

I9

62

Six-bit word error probability

107 [~ -
10-2 6 bit+parity]
B \\ No coding N
(15,7) Majority decoding
\]
1073 [~ \ —
[\]
(73,45) APP \
| \ \ -
\
= (44,22) APP \ _
\
- \
=4 (24,12) APP \ —
\
= \]
- 73,45 -
(MOJOFHy) |5,7) APP \\
N decoding \ (44,22) \ .
Majority \
///decoding \
1075~ \ -]
| \ B
(24,12) '\
— Majority \ —
v \ decoding \
\ \
- \]
\ \
|0—6 I . l l Y | \
0 2 4 6 8 10 12

Normalized signal-to-noise ratio, Ep/Ng, dB

Figure 25.- Performance of four error correction codes with two
different decoding methods.

res— i, [

Log undetected word error rate

------ (24,12) Majority decoding
(44,22) Majority decoding s

——-—— (44,22) APP decoding /
——— (73,45) Majority decoding /

——--— (73,45) Full APP decoding

—=-~-— (7,6) Parity check code

Log deletion rate

Figure 26.- Detected versus undetected word errors for several codes
and decoding methods.

63

35—

A
30 Actually O errors/block out
(1710 blocks)
2
2
3
© 251
5
>
S
(=}
Na)
g Actually >4 errors/block out
° (250 error blocks)
o 20
©
=)
O
8
[=4
Qo
>
o
o
- 15 H-
=
2
(&)
o
L0
s o)
)
g 4
c
S
@
a
' SN Actually 1-4 errors/block out
. % ///////// (540 blocks)
5F) OO S o A
o © > AJA
® © B A
o O AT
ALTNE A
Oy ey 5O RO
0 .25 .50 .75 1.0

Calculated probability of O errors in a block

Figure 27.- Distributions of calculated P(OE) for different counted numbers
of output errors per block (continuously generated error stream at
Pe = 7 percent).

64

S9

Separation Y .0
. . i
of information sliz|iifiofo|e]|7]e|s]a | () —
parity bits '\F
r———Fk——9
| f I
| | Comparator | |
| 7'y 7y |
S Computation | Q Q I
I |
o _l |
I |
| Threshold element 2 |
i 'y 7y y Y 'y 7'y |
| I
| I
P |
L] d
¥ W W] ¥
Si2[Si1{Si0|S9|Ss|S
]
/
Q | Q' [action é;’/ é
ool iR=i E‘;,
.0
O | | |deleteig
Hej
110 deIe'relK v
Vo i@siT Threshold element |

Figure 28.- Simplified output error detection circuit for the (24,12) code.

ij2 data fransmit

I2l|||l0|9|8|7|6|5|4|3|2|II

L

Sequencer

— i,p,i,p

pi2 parity transmit

(a) Encoder.

Separate
information
and
parity

information bit register

-%i'uztnllohls[7|6|5l4|3]2|||ﬁ

66

S computation

S complement

h

Smi3u|5w|59|58|57lsel55154|53132I54
% [1 |

asley”

e

r y A 4 v

[Threshold element I

(b) Majority decision decoder.

& Corrected i

Figure 29.- Block diagram of the (24,12) encoder and majority

decision decoder.

Separate Information bit register

ito'ip! | A i
Cplip, mfog:‘nghon Ip i l'zl"|'°|9|8|7|6|5|4|3|2|ﬂ——'€?“'c°"iwed
|

parity

S computation

S complement

+ v v 4 3
Si2[Su[Sio| So[Ss| S7| Se] 55| 4| S3[S2[S:
] 1 [

drlas” >

AW
J

I1&D Caj
EahabadN .
levels [computation

a—oTuvosT—

Key to Unit Mod-2 X Y Nonlinear function
symbols: delay adder |> y=2 loge coth (x/2)
Analog Analog
multiplier adder

Figure 30.- Complete hard decision feedback APP decoder for the
(24,12) convolutional code.

67

Datg input
i5 g iz lp 1y

e
7 6l5|4 3»ELLJ—>i|,izr““~i|5

Vg

D
(a) Encoder.

Feedback of decoded bits

Decode
l mode T
|
—0 15|I4II3||2LTIOI9JE|7|6|5L4J3|2| —
Load
mode
1|
o S ' .
Ay A3 Al A% Ay 0
Majority element —>
Tojery eemenl o L Decoder
output

(b) Majority decision decoder.

Feedback of decodeq bits

~0

-7

Decode
mode
/M

\o—|5[|4||3 !2 llolsle 7|6 5|4|3J3 | '\[/Deéodir

ode %\A g‘) l
bS Daw

-

Az AI Az
Threshold element

T =3 const

(¢) Majority decision decoder employing a threshold element.

Figure 31.- Encoder and majority decoder for the (15,7) Bose-Chaudhuri code.

68

Feedback of decoded bits

—O—L0
Decode o
mode |
Binary shift register I
L L./ o
o l5|l4l|3|l2|ll||0|9|8I7|6|5|4 |3]2]} SNy IR
mode i output
™ O\
A fw

A2 Zs I

r

e

Az Q$9 ;

Q b

) "’

s T
Wq W3 4§2 éwl Wo
z
| *er
. + TR
C. + +
Corjnp + + A\
Fuil APP

|
i is|iafis|iz|in]io] o8| 7]e]s]a]3]2] 1 |— C:rjnp

Analog shift register

Hard dec APP

2 coms
Feedback of the C; Constant
Key to Unit Mod-2 X Y_ Nonlinear function Analog
symbols: delay adder y=2 log, coth {x/2) multiplier

@ Analog
adder

Figure 32.- Complete APP decoding circuit for the (15,7) Bose-Chaudhuri code.

69

Figure 33.- Bit error probability calculations.

Log bit error probability

®o

Coding

_~No coding

w

———
Rate loss——

®

® ®

E/N,,dB
=—Coding gain

Figure 34.- Coding performance calculations on a bit error probability basis.

Log word error probability

@D @O0 ©

Figure 35.- Coding performance on a word error probability basis.

70

~ \\ ili
~a Word error probability
\\\/ with coding

Word error probability

Bit error probability
no coding

|=— Deletion rate loss

N
N
AN
N no coding
Y \
\
\ \
\
\
\
\
\/
\
\ S
-]
Code rate loss
8
2X4

NASA-Langley, 1968 —— 7

A-2752

National Aeronautics and Space Administration

WASHINGTON, D. C.

OFFICIAL BUSINESS

uay oLt 32 51 30% 68059 009043
Al FONOE wEa200S LABURATORY/AFWL/
RIRTLANG AR FuxCo 8ASE, Niw MEXICO ®BYLLG

Ad D INS Moo F oy AN Iy Ay Cetle b TG

POSTMASTER:

“The aeropautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of buman knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

~—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of
importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-
tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated
under a NASA contract or grant and considered an important contribution to

existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA
activities. Publications include conference proceedings, monographs, data
compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech-
nology used by NASA that may be of particular interest in commercial and other
non-aerospace applications. Publications include Tech Briefs, Technology
Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

FIRST CLASS MAIL FOSTAGE AND FEES PAD

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

If Undeliverable (Section 158
Postal Manual) Do Not Return

—HEE .

T

[

U

